Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
NPJ Digit Med ; 5(1): 120, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-2000937

ABSTRACT

We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking both large-scale utilization and clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%, p < 10-4) with an excess of 92 PE cases during the early COVID-19 outbreak, i.e., ~1.3 daily PE cases more than statistically expected. Our results suggest that MIDH can contribute value as an exploratory tool, aiming at a better understanding of pandemic-related effects on healthcare.

2.
Nat Med ; 27(10): 1735-1743, 2021 10.
Article in English | MEDLINE | ID: covidwho-1412139

ABSTRACT

Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.


Subject(s)
COVID-19/physiopathology , Machine Learning , Outcome Assessment, Health Care , COVID-19/therapy , COVID-19/virology , Electronic Health Records , Humans , Prognosis , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL